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Abstract

In this work, the reliability performance of a non-orthogonal multiple access (NOMA) system is addressed.

We characterize the reliability performance of the users in a downlink power domain NOMA system with arbitrary

ordered pulse-amplitude modulation (PAM) and quadrature amplitude modulation (QAM). In particular, the exact

symbol error rate (SER) expressions are derived. Furthermore, by taking the power allocation between users into

account, a reliability optimization problem is formulated, which minimizes the SER of the user with a good channel

quality while guaranteeing the reliability requirement for the user with a relatively poor channel. Based on the

characterized SER model, a suboptimal power allocation approach for this problem is provided with a performance

extremely close to the optimal solution. Through simulations, we validate the provided SER characterization and

confirm the effectiveness of the proposed suboptimal power allocation policy.

Index Terms

Non-orthogonal multiple access (NOMA), power allocation, reliability, symbol error rate (SER).

I. INTRODUCTION

Future wireless communications are expected to provide significant high throughput and support connections

for massive devices. To meet these requirements, numerous transmission and multiple access techniques have

been proposed and investigated, such as massive multiple-input multiple-output (MIMO) [1], millimeter-wave

(mmWave) [2], non-orthogonal multiple access (NOMA) [3]–[5], and sparse code multiple access (SCMA) [6].

Among these techniques, NOMA has been considered a key promising radio access scheme as it effectively improves

the network performances with respect to spectrum efficiency [7], [8], energy efficiency [9] and security [10]. More

importantly, NOMA can be combined with many existing and emerging techniques, such as MIMO [11], cognitive

radio (CR) [12] and simultaneous wireless information and power transfer (SWIPT) [9], [13], to further enhance

the system performance under different communication scenarios.

In comparison to the conventional orthogonal multiple access (OMA), NOMA exploits the channel gain differences

between users by employing the successive interference cancellation (SIC) and thus, schedules multiple users non-

orthogonally on the same time-spectrum resource. To take full advantage of a NOMA system, resource allocation
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policies, including power allocation and channel assignment, have been widely considered in the system design [14].

Various resource allocation policies have been proposed for NOMA systems to improve/optimize different objectives,

such as fairness among all users [15], [16], quality-of-service (QoS) [17], [18], and energy efficiency [19]–[21].

However, the above studies regarding the power allocation design generally consider the system throughput or

energy efficiency (in the design of guaranteeing fairness or QoS), while the power allocation design which can

optimize the system reliability performance, i.e., minimize the error rate for each user according to the service

requirement, has not been addressed so far.

Clearly, having closed-form error probability expressions facilitates the reliability-optimal power allocation design

of such NOMA systems. However, this has not been well studied so far. On the one hand, only a few works address

this issue. On the other hand, these existing error probability expressions of NOMA users are conducted under

scenarios with specific assumptions. For example, closed-form bit error rate (BER) expressions of the quadrature

phase-shift keying (QPSK) based NOMA system are derived in [22]. In addition, the authors in [23] study the

analytical symbol error rate (SER) of NOMA users in a visible light communications (VLC) network where the

line of sight (LOS) link is always feasible. However, the reliability characterisation of NOMA users with more

general assumptions is missing, i.e., for networks which are not of the specific VLC transmission, with general

pathloss and channel assumptions, and with general modulation schemes, such as pulse-amplitude modulation (PAM)

and quadrature amplitude modulation (QAM). Hence, characterizing the reliability and providing the closed-form

error probability expressions for general NOMA systems with arbitrary modulation orders is of significant interest.

More importantly, this enables us to analytically investigate the optimal power allocation design for the NOMA

system when considering the reliability requirements of the users.

In this work, we aim at deriving the analytical SER expressions for general NOMA systems and providing the

closed-form solution to the power allocation optimization problem while guaranteeing the reliability requirements

of the NOMA users. First of all, by analyzing the constellation of the superposed symbol in the PAM based NOMA

system, the exact SER expression for each user with arbitrary PAM order is obtained. In addition, considering

the relationship between the PAM and QAM modulations, the exact SER expressions for the NOMA system with

arbitrary QAM size are also derived. Secondly, we study a reliability optimal design for the considered NOMA

system. After investigating the impact of power allocation parameters on users’ SERs, we formulate the optimization

problem, which maximize the reliability of the user with a good channel quality while guaranteeing the reliability

requirement of the user with a relatively poor channel. A closed-form suboptimal power allocation solution for this

problem is provided, which is shown to be extremely close to the optimal one. By simulations, we validate our

analytical SER expressions and demonstrate the excellent performance of the proposed suboptimal power allocation

policy.

The remainder of the paper is organized as follows. In Section II, we introduce the model of the considered NOMA

system. The general SER analysis of the NOMA systems with arbitrary PAM and QAM schemes are provided in

Section III and IV, respectively. In Section V, we study the influence of power allocation on the SER and propose

our power allocation design which satisfies the reliability requirements of the users close to the optimum. In Section

VI, We validate the exact SER expressions and evaluate the proposed power allocation approach via simulations.
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Finally, we conclude the paper with a summary of our key contributions in Section VII.

II. SYSTEM MODEL

We consider a NOMA system, including a source and two users. The channels between the source and users are

assumed to experience quasi-static fading, i.e., channels are constant within each transmission and vary from one

transmission to the next. Without loss of generality, in each transmission, we always call the user with the relatively

poor channel quality by User 1 and the one with the relatively better channel by User 2. During a transmission, two

different information symbols s1 and s2 are required to be sent from the source to User 1 and User 2, respectively.

The system operates under a NOMA scheme where these two symbols are transmitted simultaneously, i.e., the

source transmits the superposition of the scaled symbols to both users at the same time after allocating transmit

powers to these two symbols. Denote by p1 and p2 the transmit powers allocated for these two messages, then the

superposed symbol z at the source side is given by

z =
√
p1s1 +

√
p2s2, (1)

where s1 and s2 are encoded with the same modulation scheme, i.e., PAM or QAM. In addition, s1 and s2 are

assumed with unit (average) power and the corresponding alphabet of these two constellations are denoted as A1

and A2. Thus, the energy of z is Es = p1 + p2. The source allocates p1 and p2 for the two symbols according

to a power allocation parameter γ. In particular, γ indicates the ratio of the power allocated to User 1 to the total

power, i.e., γ = p1/Es.

Generally, the constellation of the superposed symbol z can be obtained by superimposing the constellation of

User 2 on top of the constellation of User 1, which is influenced by the modulation methods of the two users.

Fig. 1 and Fig. 4 offer two examples of the formation process for PAM and QAM based superposed symbols,

respectively. Furthermore, the corresponding constellation points of these two kinds of superposed symbols will be

analyzed in details in Section III-A and Section IV-A accordingly.

In the downlink NOMA system, the superposed symbol z is transmitted via two independent fading channels to

User 1 and User 2. The received symbols at the two users are expressed as

y1 = h1 (
√
p1s1 +

√
p2s2) + w1,

y2 = h2 (
√
p1s1 +

√
p2s2) + w2,

(2)

where w1 and w2 are either real or complex white Gaussian random noises depending on the modulation schemes.

For the PAM based NOMA system, we assume that w1 ∼ N (0, σ2
1) and w2 ∼ N (0, σ2

2). In addition, for the

QAM based system, the real and imaginary parts of the noise for the same user are independent and identically

distributed (i.i.d.) Gaussian random variables, thus, we have <{w1} and ={w1} ∼ N (0, σ2
1), as well as <{w2} and

={w2} ∼ N (0, σ2
2). Further, h1 and h2 are the corresponding channel coefficients from the source to the two users.

Recall that we denote the user with the relatively low channel gain by User 1. Hence, in this work |h1| ≤ |h2|
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Fig. 1. The construction of the superposed symbol

always holds. The equivalent model of (2) can be achieved by dividing both sides by h1 and h2, respectively, which

gives

r1 =
y1

h1
= (
√
p1s1 +

√
p2s2) + ŵ1,

r2 =
y2

h2
= (
√
p1s1 +

√
p2s2) + ŵ2,

(3)

where ŵ1 = w1

h1
and ŵ2 = w2

h2
are scaled real or complex white Gaussian random noises. Obviously, the mean

values of ŵ1 and ŵ2 remain 0 and their variances for the PAM based system or on one dimension for the QAM

based NOMA are N1

2 =
σ2
1

‖h1‖22
and N2

2 =
σ2
2

‖h2‖22
, respectively. It is worth mentioning that the key idea of the NOMA

system is to allocate more power to the user with poorer channel conditions [5], thus, p1 > p2 always holds in our

system.

In the NOMA system, the two users decode the received symbols in different manners. On the one hand, User 1

directly decodes s1 by treating s2 as interference. Thus, the estimation of s1 at User 1 is obtained by the minimum

Euclidean distance criterion and given by

ŝ1 = arg min
s1∈A1

‖r1 −
√
p1s1‖22 , (4)

where ‖·‖2 represents the Euclidean norm. The simplest way to achieve ŝ1 from r1 is to demodulate the power

normalized r1 directly, i.e., ŝ1 = Q1( r1√
p1

), where Q1(·) denotes the corresponding PAM or QAM demodulation

function for User 1. On the other hand, SIC is employed when User 2 retrieves its symbol. In particular, the

decoding process for User 2 has the following steps: First, the estimation of s1 at User 2 is obtained similar to (4),

i.e., ŝ′1 = arg mins1∈A1

∥∥r2 −
√
p1s1

∥∥2

2
. Afterwards, the interference term from User 1 can be subtracted from the

received symbol, which gives us the updated received symbol r̃2 = r2 −
√
p1ŝ
′
1. Finally, by utilizing the minimum

distance criterion, the estimation of s2 for User 2 can be achieved from r̃2 by

ŝ2 = arg min
s2∈A2

‖r̃2 −
√
p2s2‖22 . (5)

III. SERS OF NOMA USERS WITH PAM SYMBOLS

In this section, we study SER expressions for a PAM based NOMA system. In Section III-A, the superposed

symbol z given in Equation (1) is characterized first. Based on that, we derive the exact closed-form SERs of User 1

and User 2 in Section III-B and Section III-C, respectively. Furthermore, to make our analysis and derivations easier

to understand, we start each of these sections with a simple example and then extend the analysis and derivation

process to a general case.
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Fig. 2. The superposed symbol of 4-PAM on 2-PAM

A. Analysis of the superposed PAM symbol

We consider a general scenario that the constellation orders of PAM schemes can be different for encoding the

messages for the two users. We assume that the messages for User 1 and User 2 are encoded via N -PAM and M -

PAM schemes, respectively, i.e., N and M are not necessarily the same. In addition, without loss of generality, we

assume that for each user the constellation points have the same occurrence probability. Denote the ith constellation

points of User 1 and User 2 by C1
i and C2

i , respectively. Then, we have P (C1
i ) = 1

N , i = 1, ..., N for User 1

and P (C2
i ) = 1

M , i = 1, ...,M for User 2. Under the above assumption, in the following we study the superposed

symbol of the PAM based NOMA system.

According to (1), the transmitted symbol, which is a superposition of an N -PAM symbol and an M -PAM symbol,

can be treated as a PAM-liked symbol with a higher constellation order. For example, if 2-PAM and 4-PAM are

utilized by User 1 and User 2, respectively, then the corresponding transmitted symbols is an 8-PAM-liked symbol

and the construction of it is illustrated on the left of Fig. 1. The new constellations of the superposed symbol are

illustrated by the black squares on the right side of Fig. 1, denoted as Z1, Z2, . . . , Z8.

The detailed constellation of the superposed symbol in Fig. 1 is provided in Fig. 2. As the constellation is

symmetric with respect to the y-axis, we only show the decision region of each point on the right side, which is

divided by the red dashed line. In the figure, d1 and d2 are the distant parameters of the two users, which are

influenced by the transmit powers (p1 and p2) and constellation orders (N and M ) of the users. In this example

(N=2, M=4), we have d1 =
√
p1 and d2 =

√
p2/5.

Based on the above example, we further discuss the superposed symbol with general modulation orders, i.e.,

N -PAM for User 1 and M -PAM for User 2. In fact, the difference between the general case and the above special

case (N=2, M=4) is on the distant parameters. In particular, we have d1 =
√

3p1
(N−1)(N+1) and d2 =

√
3p2

(M−1)(M+1)

for the general case, where the fraction part in the square root is obtained from the power normalization factor

for the PAM modulation. Moreover, the decision regions of the constellation points of the superposed symbol

should be prevented from overlapping, e.g., the decision regions of Z4 and Z5 in Fig. 2 will be overlapped if the

distant constraint is not fulfilled. Hence, d1 and d2 have to satisfy the constraint d1 > (M − 1)d2. Finally, all the

possible constellation points (Zi, i = 1, ...,MN ) of the superposed symbol have the same occurrence probability,

i.e., P (Zi) = P (C1
i ) · P (C2

i ) = 1
MN .

B. SER of User 1

We start also with discussing the example given in Fig. 1 before deriving the general SER expression. Assuming

the symbol Z4 is transmitted, then the corresponding information symbol of User 1 conveyed by it is C1
1 . By
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Fig. 3. The superposed symbol of 4-PAM on 4-PAM

examining Fig. 2, one can find that when Z4 is sent, even if the received symbol is decoded as Z1, Z2 or Z3,

User 1 can still obtain the right information. Thus, the probability of a correct decoding for User 1 with Z4 can be

expressed as
P (U1 =1|Z4)

= P (Z1|Z4) + P (Z2|Z4) + P (Z3|Z4) + P (Z4|Z4),
(6)

where U1 =1 means User 1 achieves the transmitted symbol successfully and the conditional probability P (Z1|Z4)

represents the probability of cataloguing the received PAM symbol to Z1 when transmitting Z4.

As given in Equation (3), the equalized received symbol at User 1 over channel h1 is r1. Thus, the conditional

probability distribution function (PDF) of r1 when Z4 has been transmitted is:

P (r1|Z4) =
1√
πN1

e
−(r1−(d1−3d2))2

N1 . (7)

From Fig. 2 we can see that the correct decision region of User 1 given Z4 is actually the whole right side of the

y-axis, thus, Equation (6) can be written as P (U1 = 1|Z4) = P (r1 > 0|Z4). By utilizing Equation (7), we have

P (r1 > 0|Z4) =

∫ ∞
0

P (r1|Z4)dr1

=
1√
πN1

∫ ∞
−d1+3d2

e
−r2
N1 dr1 = 1−Q

(
d1 − 3d2√
N1/2

)
,

(8)

where Q(·) represents the Gaussian Q-function which is defined as Q(x) = 1√
2π

∫∞
0
e−

x2

2 dx. Similar as the

discussion from (6) to (8), the correct decoding probability of User 1 with other transmitted symbols can be

obtained. Then, by employing the y-axis symmetry of the constellation, the overall correct decoding probability of

User 1 is obtained as

P (U1 =1) = 2

4∑
i=1

P (U1 =1|Zi)P (Zi) =
1

4

4∑
i=1

P (U1 =1|Zi)

= 1− 1

4

2∑
k=1

[
Q

(
d1−(2k−1)d2√

N1/2

)
+Q

(
d1+(2k−1)d2√

N1/2

)]
.

(9)

Apparently, the SER of User 1 in this case can be achieved from (9) easily, which is SERU1 = 1− P (U1 = 1).

Now, we consider the general case with an M -PAM overlaid on an N -PAM constellation. The basic procedure

to obtain the SER expression of it is very similar to the special case (N = 2 and M = 4) discussed above. The key

difference between them lies in the correct decision region of each constellation point for User 1. In other words,

the total number and the length of the different correct decision regions under the general case are different from

the special one. In particular, there are only two kinds of correct decision regions in the above special case, i.e.,
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(0,+∞) for points Z1 to Z4 and (−∞, 0) for points Z5 to Z8. Thus, the length of the two regions are the same and

equal to infinity. For the general case, it is obvious that the total number of the different correct decision regions

is equal to N . However, the length of these regions are not the same. Furthermore, we can classify these regions

into two types, i.e., 2 end regions (far left and far right regions) and N − 2 intermediate regions. The length of

these two kinds of regions are infinity and 2d1, respectively. In addition, changing the value of M cannot influence

the properties of the correct decision regions. To give a more intuitive overview of the two types of regions, an

example with 4-PAM for both two users are given in Fig. 3. As we can see from it, the correct decision regions for

Z1 to Z4 and Z13 to Z16 are the end regions whose corresponding range are (2d1,+∞) and (−∞,−2d1). While

the intermediate regions (0, 2d1) and (−2d1, 0) are the correct decision region for the constellation points Z5 to

Z8 and Z9 to Z12, respectively.

Based on the discussion above, the computation of the SER in the general case can be partitioned into two parts

according to the types of correct decision regions for User 1. For the first type of regions, namely, the left end and

the right end regions, there are in total 2M constellation points located in these two regions, i.e., M points in each

of them. As the two regions are y-axis symmetric, we only need to calculate the correct decoding probability for

User 1 of the constellation points in one of these regions, i.e., the M constellation points in the far right region,

for example, point Z1 to Z4 in Fig. 3. Let S1 denote the set of the constellation points that are located in the far

right region, e.g., S1 = {Z1, Z2, Z3, Z4} in Fig. 3, then the probability of a correct decoding for User 1 with the

points in set S1 is

PS1(U1 =1) =

M∑
i=1

P (U1 =1|Zi ∈ S1)P (Zi)

=
1

MN

M
2∑

k=1

[
2−Q

(
d1−(2k−1)d2√

N1/2

)
−Q

(
d1+(2k−1)d2√

N1/2

)]
,

(10)

where the terms in the square brackets represent the correct decoding probabilities of two constellation points, e.g.,

Z1 and Z4 in Fig. 3.

Next, we discuss the intermediate regions. In fact, there are M constellation points in each intermediate region and

the position of these points in different intermediate regions have the same pattern. Let S2 denote the constellation

points set of an arbitrary intermediate region, e.g., S2 = {Z5, Z6, Z7, Z8} in Fig. 3, the probability of a correct

decoding for User 1 with set S2 can be calculated by

PS2(U1 =1) =

M∑
i=1

P (U1 =1|Zi ∈ S2)P (Zi)

=
1

MN

2 M
2∑

k=1

(
1−Q

(
d1−(2k−1)d2√

N1/2

)
−Q

(
d1+(2k−1)d2√

N1/2

)). (11)

The derivation of (11) is facilitated by the symmetry property, i.e., we only need to compute the probabilities of half

the points (points from 1 to M/2 in this decision region). For example, to obtain the correct decoding probabilities

of the constellation points from Z5 to Z8 in Fig. 3, we only need to calculate the probabilities of points Z5 and Z6,

then multiply the summation with 2, as Z5 and Z6 are equivalent to Z8 and Z7 in their probabilities computation,

respectively.
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Finally, by taking the total number of the two types of regions into account, the overall correct decoding probability

for User 1 is obtained by

P (U1 =1) = 2PS1(U1 =1) + (N − 2)PS2(U1 =1)

=1− 2(N−1)

MN

M
2∑

k=1

[
Q

(
d1−(2k−1)d2√

N1/2

)
+Q

(
d1+(2k−1)d2√

N1/2

)]
.

(12)

Therefore, a proposition regarding to the SER of User 1 can be obtained and given in below.

Proposition 1. For a two-user NOMA system, when N -PAM and M -PAM are utilized by User 1 and User 2,

respectively, the SER of User 1 can be expressed as

SERU1 = 1− P (U1 =1). (13)

In this subsection, we provided the derivations regarding the exact SER of User 1 in PAM based NOMA systems.

In the derivations from Equation (6) to (9), we investigated the exact SER of a simple NOMA system example.

Afterwards, by extending the concept and procedure for achieving the SER of this special case to the general one,

i.e., from Equation (10) to (13), we obtained the closed-form SER expression of User 1 for the NOMA system

with arbitrary PAM constellation orders. In the next subsection, we move on to discuss the SER for User 2.

C. SER of User 2

We start with a case study to illustrates our methodology on addressing the correct decoding probabilities of

different types of constellation points. The general case will be analyzed afterwards.

In the case study, we consider an example scenario utilizing 4-PAM for both User 1 and User 2, as illustrated

in Fig. 3. Note that the constellation are symmetric regarding to y-axis, i.e., the analysis of either the left half or

the right half points in the figure are the same. In other words, we only need to discuss the right half points, i.e.,

Z8 to Z1. By examining and comparing the decision regions and distant parameters, we classify Z8 to Z1 into the

following three types

• Type 1: Left side points Z8, Z4,

• Type 2: Right side points Z5, Z1,

• Type 3: Inner part points Z7, Z6, Z3, Z2.

We first consider the left side point Z8 in which the carried information symbol for User 2 is C2
4 . And from

Fig. 3, we know that Z4, Z12 and Z16 convey the same symbol for User 2. Thus, even if the symbol Z8 is decoded

as the other three symbols, User 2 can still retrieve its information correctly. Hence, the probability of a correct

decoding for User 2 when transmitting Z8 is given by

P (U2 =1|Z8)

=P (Z4|Z8)+P (Z8|Z8)+P (Z12|Z8)+P (Z16|Z8).
(14)

According to (14), the correct decision region has 4 parts, which are discussed one by one as follows.
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For the original decision region, the correct decoding probability is

P (Z8|Z8) =
1√
πN2

∫ d2

−d1+3d2

e
−r2
N2 dr, (15)

In addition, the probability of decoding as Z4 when transmitting Z8 can be obtained by

P (Z4|Z8) =
1√
πN2

∫ 2d1+d2

2d1−d1+3d2

e
−r2
N2 dr, (16)

It can be seen that the only difference between (15) and (16) is that there is a right shift with length of 2d1 on

the integral range. Thus, P (Z12|Z8) can be obtained with the same method except the integral range shift is to the

left. For the last point Z16 at the far left, the integral shift patten is no longer holding as it involves a lower bound

with infinity. We therefore obtain P (Z16|Z8) by partitioning the integral range in the following way

P (Z16|Z8) =
1√
πN2

∫ −4d1+d2

−∞
e
−r2
N2 dr

=
1√
πN2

(∫ −4d1+d2

−4d1−d1+3d2

e
−r2
N2 dr+

∫ −4d1−d1+3d2

−∞
e
−r2
N2 dr

)
.

(17)

Therefore, equation (14) is now further given by

P (U2 =1|Z8)

=
1√
πN2

(
1∑

k=−2

∫ 2kd1+d2

2kd1−d1+3d2

e
−r2
N2 dr+

∫ −4d1−d1+3d2

−∞
e
−r2
N2 dr

)

=

1∑
k=−2

[
Q

(
(2k−1)d1+3d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]
+Q

(
5d1−3d2√
N2/2

)
.

(18)

Next, we consider Z5 which is a the Type 2 point. It carries the same symbol as Z8 for User 1, i.e., C1
2 . The same

procedure provided from (14) to (18) can be applied to obtain P (U2 =1|Z5). The only difference (in comparison

to the discussion on Z8) here is that the partition of the integral range is now on the right side. We skip the

intermediate derivations and directly provided the final expression of the correct decoding probability of Z5 for

User 2, which is
P (U2 =1|Z5)

=

1∑
k=−2

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
(2k+1)d1−3d2√

N2/2

)]
+Q

(
3d1−3d2√
N2/2

)
.

(19)

For the Type 3 points carrying information symbol C1
2 , i.e., Z6 and Z7, the partition of the integrals at the axes

ends are no longer necessary as all the correct decision regions are the closed intervals and have a length of 2d2.

Meanwhile, Z6 and Z7 share the same correct decoding probability as the PDF and the integral range of them

are always the same. In fact, this property always holds when the Type 3 constellation points carrying the same

information symbol for User 1. Therefore, for Z6 and Z7 we have

P (U2 =1|Z6)= P (U2 =1|Z7)

=

1∑
k=−2

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]
.

(20)

So far, we have obtained the correct decoding probabilities for the constellation points from Z5 to Z8. The

property they have in common is that all of these points convey the same information symbol C1
2 of User 1.
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We denote the set of these constellation points as Ω2. Then, combining (18)-(20), the overall correct decoding

probability over this set is given by

PΩ2
(U2 =1) =

8∑
i=5

P (U2 =1|Zi ∈ Ω2)P (Zi). (21)

Based on the same derivation steps for the constellation points from Z8 to Z5, the correct decoding probabilities

for the points from Z4 to Z1 can also be calculated. Similarly, denote by Ω1 the set of points carrying the information

symbol C1
1 for User 1. Thus, the correct decoding probability of the Type 1 point for User 2 in Ω1 is

P (U2 =1|Z4)

=

0∑
k=−3

[
Q

(
(2k−1)d1+3d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]
+Q

(
7d1−3d2√
N2/2

)
.

(22)

Obviously, although both Z8 and Z4 are Type 1 points, their the correct decoding probability expressions are

different. In particular, by comparing (22) with (18), we learn that the terms inside of the square bracket are the

same. While for the summation part, the lower and upper bounds are changed. And the last terms in the two

equation are different due to the change of lower bounds. The same difference is applicable to the relationship

between the two Type 2 constellation points Z5 and Z1 as well, while the influence on the last term then comes

from the change of the upper bounds of the summation. In particular, the correct detection probability of Z1 can

be obtained from (19) by adjusting the upper bounds, which is given by

P (U2 =1|Z1)

=

0∑
k=−3

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
(2k+1)d1−3d2√

N2/2

)]
+Q

(
d1−3d2√
N2/2

)
.

(23)

For the Type 3 points, from Z7 and Z6 to Z3 and Z2, the only change in the SER derivation is on the summation

bounds, i.e., for Z3 and Z2 there is no additional term due to the integral partition. Therefore, based on (20) we

have
P (U2 =1|Z2)= P (U2 =1|Z3)

=

0∑
k=−3

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]
.

(24)

According to the discussion above, the correct detection probability over the set Ω1 can be obtained as

PΩ1
(U2 =1) =

4∑
i=1

P (U2 =1|Zi ∈ Ω2)P (Zi). (25)

Considering the constellation points are y-axis symmetric, the correct detection probability of User 2 can be obtained

by

P (U2 =1) = 2PΩ1(U2 =1) + 2PΩ2(U2 =1), (26)

which can be calculated and simplified as

P (U2 =1)=1− 3

2
Q

(
d2√
N2/2

)
+

1

8

3∑
k=1

(4−k)

[
3Q

(
2kd1−d2√

N2/2

)

−3Q

(
2kd1+d2√

N2/2

)
+Q

(
(2k−1)d1+3d2√

N2/2

)
−Q

(
(2k−1)d1−3d2√

N2/2

)]
.

(27)
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P (U2 =1) = 1− 2(M−1)

M
Q

(
d2√
N2/2

)
+

2

MN

N−1∑
k=1

(N−k)

{
(M−1)

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]

+

[
Q

(
(2k−1)d1+(M−1)d2√

N2/2

)
−Q

(
(2k−1)d1−(M−1)d2√

N2/2

)]}
(33)

Hence, the SER of User 2 in this example case can be obtained, which is SERU2 = 1− P (U2 = 1).

So far, we have derived the SER for the example case shown in Fig. 3. The same methodology of derivation

process can be applied in the general case with N -PAM for User 1 and M -PAM for User 2. In particular, the

constellation points can still be catalogued into three types, namely, left side points, right side points and inner

points. In addition, these three types have N , N and (M − 2)N points, respectively. As N -PAM is utilized by

User 1, therefore, the information symbols for User 1 can be represented as C1
1 , C

1
2 , . . . , C

1
N . Each information

symbol C1
n is associated with M constellation points, and we denote the set of these points as Ωn,∀n = 1, 2, . . . , N .

Furthermore, for the nth set Ωn, the total number of the sets on its left and right are N −n and n−1, respectively.

More importantly, these two values not only provide the upper and lower bounds of the summations for the points

located in Ωn, but also determine the additional terms of Type 1 and Type 2 points resulting from the integral

partition, e.g., the bounds and the last term in (18).

Therefore, the correct decoding probability of the Type 1 point in set Ωn for User 2 can be given by

PΩn(U2 =1|Type 1)

=

n−1∑
k=−(N−n)

[
Q

(
(2k−1)d1+(M−1)d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]

+Q

((
2 (N−n)+1

)
d1−(M−1)d2√

N2/2

)
.

(28)

Similarly, the correct decoding of the Type 2 constellation point for User 2 in set Ωn is

PΩn(U2 =1|Type 2)

=

n−1∑
k=−(N−n)

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
(2k+1)d1−(M−1)d2√

N2/2

)]

+Q

((
2 (n−1)+1

)
d1−(M−1)d2√
N2/2

)
.

(29)

Meanwhile, for the Type 3 points in Ωn, they share the same correct decoding probability expression for User 2,

which is
PΩn(U2 =1|Type 3)

=

n−1∑
k=−(N−n)

[
Q

(
2kd1−d2√

N2/2

)
−Q

(
2kd1+d2√

N2/2

)]
.

(30)



12

Considering that in the set Ωn, there are 1 Type 1 constellation point, 1 Type 2 point and M−2 Type 3 constellation

points, the correct decoding probability for User 2 when giving set Ωn can be calculated by

PΩn(U2 =1) = (M − 2)P (U2 =1|Type 3)P (Zi)+

P (U2 =1|Type 2)P (Zi)+P (U2 =1|Type 1)P (Zi).
(31)

Recall that User 1 utilizes N -PAM, therefore the number of set Ωn is N . By employing the y-axis symmetric

property of the constellation points, the overall correct decoding probability for User 2 can obtained by

P (U2 =1) = 2

N/2∑
n=1

PΩn(U2 =1). (32)

By substituting (28)-(30) into (32), P (U2 =1) is further given by Equation (33) at the top of the next page.

Finally, the proposition associated to the SER of User 2 is obtained and given below.

Proposition 2. For a two-user NOMA system, when N -PAM and M -PAM are utilized by User 1 and User 2,

respectively, the SER of User 2 can be expressed as

SERU2 = 1− P (U2 =1). (34)

Section III-C studied the SER expression of User 2 in PAM based NOMA systems. In the first part of this

subsection, we conducted a case study with a simple PAM based NOMA system and the derivation for achieving

the SER of User 2 in this case is given by Equation (14) to (27). After that, the derivation of this example was

extend to a general case. From (28) to (34), the steps for deriving the closed-form SER expression of User 2 for a

NOMA system with arbitrary PAM orders were provided.

IV. SERS OF NOMA USERS WITH QAM SYMBOLS

When User 1 and User 2 are encoded with N -ary and M -ary rectangular QAM schemes, respectively, the

transmitted superposition symbol becomes a QAM-liked symbol with the constellation order of MN . For example,

if 4-QAM is applied to both two users, the transmitted symbol will be a 16-QAM-liked symbol and the construction

of it is shown in Fig. 4.

User 1 User 2 New symbol

C1
2 C1

1

C1
4C1

3

C2
1C2

2

C2
4

C2
3

Z1Z2Z3Z4

Z7Z8 Z6 Z5

Z11Z12 Z10 Z9

Z15Z16 Z14 Z13

d1

d2

Fig. 4. The construction of the superposed symbol



13

df1(γ)

dγ
= − (N − 1)

MN
√

2π

M
2∑

k=1

e−
α2γ+(2k+1)2β2(1−γ)

2

[
αγ−

1
2

(
e(2k−1)αβ

√
γ(1−γ) + e−(2k−1)αβ

√
γ(1−γ)

)
+ (2k − 1)β (1− γ)

− 1
2

(
e(2k−1)αβ

√
γ(1−γ) − e−(2k−1)αβ

√
γ(1−γ)

)]
(39)

A. Analysis of the superposed QAM symbol

After obtaining the construction pattern of the superposed symbol, we can use the property of the rectangular

QAM to further study the NOMA symbol. It is well know that a rectangular QAM symbol can be easily transferred

into two independent PAM signals on in-phase and quadrature carriers separately. We denote these two components

as x and y, which are located on the x-axis and y-axis accordingly, as shown in Fig. 4. Hence, for User 1 and User 2,

their corresponding QAM symbols can be treated as a composition of two
√
N -PAM and two

√
M -PAM symbols,

respectively. In this case, we can divide the superposed symbol into two in-phase and quadrature components and

each component is a
√
MN -PAM-liked symbol. For example, in Fig. 4, the 4-QAM constellations of the two users

are all constructed from two quadrature 2-PAM symbols, and the superposed symbol is a 16-QAM-liked symbol

which can be separated as two independent 4-PAM-liked symbols.

From the analysis above, we know that instead of analysing the superposed QAM-liked symbol directly, one can

study the corresponding
√
MN -PAM-liked symbol of it first, then reconstruct the NOMA symbol according to its

one dimensional PAM-liked symbol. In order to investigate the
√
MN -PAM-liked symbol, the basic parameters of

it must be acquired. In particular, the distance parameters associated to this PAM-liked symbol of User 1 and User 2.

It is known that the power normalization factor of a rectangular N -QAM symbol is
√

3
2(N−1) . Thus, the distance

parameters d̃1 and d̃2 for the corresponding PAM symbols of User 1 and User 2 are given as d̃1 =
√

3p1
2(N−1)

and d̃2 =
√

3p2
2(M−1) . For example, as shown in Fig. 4, when 4-QAM is employed by the two users, the distance

parameters of them are d̃1 =
√

p1
2 and d̃2 =

√
p2
2 , respectively.

B. SER of User 1 and User 2

As discussed before, we know the QAM based NOMA symbol is an extension of the corresponding PAM-liked

symbol from one dimension to two dimensions. And this PAM-liked symbol is actually the superposition of the two

PAM symbols that are obtained from the QAM symbols of User 1 and User 2. Therefore, the model considered in

Section III can be applied to here.

For User 1, the correct decoding probability on dimension x can be calculated by equation (12) and we denote it

by Px(U1=1). Notice that the constellation parameter M , N , d1 and d2 in (12) must be replaced by
√
M ,
√
N ,

d̃1 and d̃2 in this case. Similarly, the correct decoding probability on dimension y for User 1 can be obtained by

the same equation, and denoted as Py(U1=1). Therefore, the SER for User 1 can be expressed as

SERU1 = 1− Px(U1=1)Py(U1=1). (35)
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Recall that the two components are independent and have identical probability expressions, thus, SERU1 can be

further simplified. Hence, we can obtain the following proposition.

Proposition 3. For a NOMA system, when N -QAM and M -QAM are utilized by User 1 and User 2, respectively,

the SER of User 1 can be expressed as

SERU1 = 1− P 2
x (U1=1). (36)

Obviously, the same procedure can be conducted on Equation (33) to obtain the SER of User 2, which gives us

the proposition in below.

Proposition 4. For a NOMA system, when N -QAM and M -QAM are utilized by User 1 and User 2, respectively,

the SER of User 2 can be expressed as

SERU2 = 1− P 2
x (U2=1), (37)

where Px(U2=1) is the correct decoding probability of User 2 obtained by substituting the replacement parameters

to (33).

V. POWER ALLOCATION DESIGN

In this section, we provide power allocation designs to guarantee users’ reliabilities for the considered NOMA

systems. First, we formulate the optimization problem, which maximize one user’s reliability while satisfying the

reliability requirement of the other user. Then, we investigate the influence of power allocation on the reliability

of each user and propose solutions to the optimization problems for both PAM and QAM based NOMA systems

according to the power allocation analysis of each user.

A. Optimization problem

Recall that the user exhibiting the better channel condition is called User 2. In other words, the channel quality

of User 1 is relatively more limited and the reliability of the transmission to User 1 needs to be more assured.

Hence, we consider the following system design which minimize the SER of User 2 while guaranteeing the SER

requirement of the User 1.

According to the SER analysis provided in the previous sections, the SER expressions for both two users can

be rewritten as functions of the power allocation parameter γ by substituting d1 =
√

3Esγ
(N−1)(N+1) and d2 =√

3Es(1−γ)
(M−1)(M+1) into Equations (13) and (34) for the PAM case and by substituting d̃1 =

√
3Esγ

2(N−1) and d̃2 =√
3Es(1−γ)
2(M−1) into Equations (36) and (37) for the QAM case. In other words, the SERs are strongly influenced by

the decision of the power allocation coefficient γ ∈ (0.5, 1) 1. Hence, the power allocation problem is formulated

as

1Recall that we always call the user with a higher transmit power by User 1. Hence, the feasible range of the power allocation coefficient is

0.5 < γ < 1.
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df2(γ)

dγ
=

(M − 1)ω

M
√

2π(1−γ)
e−

(ω
√

1−γ)2
2 +

2

MN
√

2π

N−1∑
k=1

(N − k)

{
(M − 1)kυ
√
γ

(
e−

(2kυ
√
γ−ω

√
1−γ)2

2 − e−
(2kυ

√
γ+ω

√
1−γ)2

2

)
+

(M − 1)ω

2
√

1− γ

(
e−

(2kυ
√
γ−ω

√
1−γ)2

2 + e−
(2kυ

√
γ+ω

√
1−γ)2

2 − e−
((2k−1)υ

√
γ−(M−1)ω

√
1−γ)2

2 − e−
((2k−1)υ

√
γ+(M−1)ω

√
1−γ)2

2

)
+

(2k − 1)υ

2
√
γ

(
e−

((2k−1)υ
√
γ+(M−1)ω

√
1−γ)2

2 − e−
((2k−1)υ

√
γ−(M−1)ω

√
1−γ)2

2

)}
(41)

df̂2(γ)

dγ
=

(N−1)(M−1)ω

MN
√

2π(1−γ)

{(
e−

(2υ
√
γ−ω
√

1−γ)2
2 −e−

(υ
√
γ+(M−1)ω

√
1−γ)2

2

)
+
(
e−

(ω
√

1−γ)2
2 −e−

(υ
√
γ−(M−1)ω

√
1−γ)2

2

)
+e−

(2υ
√
γ+ω

√
1−γ)2

2

}
+

(N−1)υ

MN
√

2πγ

{
2(M − 1)

(
e−

(2υ
√
γ−ω
√

1−γ)2
2 − e−

(2υ
√
γ+ω
√

1−γ)2
2

)
+ e−

(υ
√
γ+(M−1)ω

√
1−γ)2

2

}
+

1

MN
√

2π

{
(M − 1)ω√

1−γ
e−

(ω
√

1−γ)2
2 − (N − 1)υ

√
γ

e−
(υ
√
γ−(M−1)ω

√
1−γ)2

2

}
(42)

min
γ∈(0.5,1)

SERU2

s.t. SERU1 ≤ λ,
(38)

where λ is the SER constraint of User 1. In the following, we solve the problem under scenarios of users with the

PAM symbols and the QAM symbols, respectively.

B. NOMA users with PAM symbols

We first discuss the PAM case and provide the following key proposition for determining γ.

Proposition 5. For a two-user NOMA system, when N -PAM and M -PAM are utilized by User 1 and User 2,

respectively, the SER of User 1 is decreasing in the power allocation coefficient γ within its feasible range.

Proof. After rewriting the SER of user 1 in Equation (13) as f1 (γ), the first derivative of the equation can be

derived as (39) with parameter α =
√

6Es
N1(N+1)(N−1) and β =

√
6Es

N1(M+1)(M−1) . Obviously, the fraction before

the summation symbol in the equation is negative. For the part inside the summation, it is clear that the exponential

term before the square bracket is always greater than 0. Meanwhile, the first part in the square bracket is positive. In

addition, the second part in this square bracket is also positive as e(2k−1)αβ
√
γ(1−γ) > 1 and e−(2k−1)αβ

√
γ(1−γ) <

1. Therefore, the first derivative of SER for User 1 is always negative within the feasible range of γ, which proves

that this function is monotonically decreasing.

After achieving the relationship between the power allocation parameter γ and the SER of User 1 from Propo-

sition 5, we continue to study the influence brought by γ on the SER of User 2 and propose Proposition 6 in the

following, which provides a suboptimal solution of (38).
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Based on Proposition 5, with certain Es and N1, the constraint in Problem (38) is equivalent to γ ≥ γλ, where

γλ is the solution of equation f1 (γλ) = λ. Thus, the original optimization problem (38) can be written as

min
γ

SERU2

s.t. γλ ≤ γ ≤ 1.

(40)

The closed-form expression of the global optimal solution for this problem is difficult to obtain, especially noting

that the objective function SERU2 is non-convex in γ. It is true that a suboptimal γ with a sufficient small error

(in comparison to the optimal one) can be obtained by exhaustive search, while it requires a large number of

searching iterations and provides less analytical insights of the system behaviour. Observing this, in the following,

we propose a suboptimal solution of γ with a closed-form expression. We will show in the simulation section that

this closed-form solution preserves almost the same SER performance as the optimal one.

Proposition 6. For the PAM based NOMA system, the suboptimal power allocation coefficient for problem min
γ

SERU2

is γsub = M2(N2−1)
M2N2−1 . There always exists a better power allocation coefficient whose value is smaller than the

suboptimal one, i.e., γbtr < γsub, which can provide a lower SERU2 for User 2.

Proof. Similar to the proof of Proposition 5, the SER expression of User 2 in (34) can be written as a function

f2 (γ) and the first derivative of it is given in (41), in which υ =
√

6Es
N2(N+1)(N−1) and ω =

√
6Es

N2(M+1)(M−1) .

Intuitively, the γ for which df2(γ)
dγ = 0 holds is the optimal value to provide the minimum SER for User 2. However,

it is not easy to obtain the closed form solution for it as the expression of df2(γ)
dγ is quite complicated. Therefore,

we can try to find a suboptimal solution with a simple closed form expression, which can make the first derivative

of f2(γ) has a value relatively close to 0.

Moreover, by examining Equation (33), we can observe that the values of the terms inside of the summation

become smaller with the increasing of k. In other words, the influence of these terms with larger k on the SER of

User 2 is more insignificant. Thus, we can approximate (34) by only keeping the terms with k = 1. Denoting this

approximation as f̂2(γ), the first derivative of it with respect to γ can be derived as (42). Instead of finding the

suboptimal solution which makes the absolute value of df2(γ)
dγ as small as possible, we try to achieve the suboptimal

solution based on f̂2(γ).

By comparing all the exponential elements in (42), we notice that e−
(ω
√

1−γ)2
2 and e−

(υ
√
γ−(M−1)ω

√
1−γ)2

2 have

greater values than the remaining exponential elements due to the constraint d1 > (M − 1)d2. Therefore, to make

the absolute value of df2(γ)
dγ as small as possible, the best choice is to eliminate the terms involving these two

exponential elements. Moreover, Equation (42) consists of three parts and only the first and third parts contain the

two greater exponential elements. When comparing these two part, the coefficient before e−
(ω
√

1−γ)2
2 in the first

part is larger than it in the third part, which means the influence brought by the first part is higher than the third

one. In other words, we can make the absolute value of df2(γ)
dγ relatively small by only eliminating the two greater

exponential elements in the first part. By examining this part, it is easy to see that when υ
√
γ = Mω

√
1− γ, the

terms in the first and second parentheses within the curly braces can be eliminated. Thus, the suboptimal power

allocation coefficient of User 2 can be obtained from this equality, which is γsub = M2(N2−1)
M2N2−1 .
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After obtaining the suboptimal solution γsub, we must prove the second statement of Proposition 6. In Appendix A,

we show that the first derivative of the SER expression for User 2 is always greater than 0 at this suboptimal γsub

point, i.e., df2(γsub)
γ > 0 always holds. Thus, f2(γ) is increasing in γ at this specific point. Since f2(γ) is a

continuous function on γ, there must exist a γbtr with value smaller than γsub, which can offer a lower SER for

User 2 than γsub, i.e., ∃ γbtr < γsub : f2(γbtr) < f2(γsub).

Therefore, based on Proposition 6, and considering that the SERU2 increases in γ when γ ≥ γsub, the suboptimal

solution γ∗ of Problem (40) is achieved by

γ∗ = max {γsub, γλ} , (43)

which is also the suboptimal solution for the original optimization problem given in (38).

C. NOMA users with QAM symbols

Similar to the above case with PAM, we provide also two propositions to show the relationship between the

power allocation parameter γ and the SERs of the two users, and to solve the non-convex problem (38) under the

QAM case.

Proposition 7. For a NOMA system, when N -QAM and M -QAM are utilized by User 1 and User 2, respectively,

the SER of User 1 is decreasing in the power allocation coefficient γ within its feasible range.

Proof. The first derivative of SERU1 in γ can be calculated, which is quite similar to Equation (39). There are two

main differences. First of all, there is an extra coefficient 2 in front of the whole summation in the expression of
df̃1(γ)
dγ due to the power 2 on the term Px(U1 = 1) of Equation (36). Secondly, the parameters M , N , α and β

in (39) are replaced by
√
M ,
√
N , α̃ and β̃, where α̃ =

√
3Es

N1(N−1) and β̃ =
√

3Es
N1(M−1) . However, these two

differences do change the sign of the equation. Thus, df̃1(γ)
dγ < 0 always holds, which means the SER of User 2

keeps decreasing with the enlargement of γ.

Proposition 8. For the QAM based NOMA system, the suboptimal power allocation coefficient for problem

min
γ

SERU2 is γsub = M(N−1)
MN−1 . There always exists a better power allocation coefficient whose value is smaller

than the suboptimal one, i.e., γbtr < γsub, which can provide a lower SERU2 for User 2.

Proof. Similar to the proof for Proposition 7, the first derivative of SERU2 in γ can be calculated by modifying

Equation (41) as well. We can conduct the same procedure for proving Proposition 6, and the condition to make
df̃2(γ)
dγ close to 0 in this case becomes to υ̃

√
γ =
√
Mω̃
√

1− γ, in which υ̃ =
√

3Es
N2(N−1) and ω̃ =

√
3Es

N2(M−1) .

Thus, the suboptimal power allocation coefficient of User 2 is γsub = M(N−1)
MN−1 . Furthermore, df̃2(γ)

dγ > 0 always

holds when γ = γsub. As f̃2(γ) is a continuous function, there must exist a smaller γbtr < γsub, which makes the

value of df̃2(γ)
dγ become smaller. In other words, γbtr can offer a lower SER for User 2 than γsub, i.e., ∃ γbtr <

γsub : f2(γbtr) < f2(γsub).
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Fig. 5. Comparison of the theoretical and simulated SER of the PAM based NOMA system with N = 2,M = 4, |h1| = 0.5, |h2| = 1 and

γ = 0.8.

Similar to the PAM case, the suboptimal solution of Problem (38) for the QAM case can also be expressed

as (43) by substituting the corresponding γsub and γλ into it.

Overall, when γsub ≥ γλ, Proposition 6 and Proposition 8 provide close-form expressions of suboptimal γ for

PAM and QAM cases, respectively. The performance of each suboptimal solution is quite close to the corresponding

optimal, which will be validated in the simulation section. Moreover, the closed-form expression allows the source

immediately determines per frame the appropriate transmit powers for the users without any searching process.

VI. SIMULATIONS

In this section, we provide our simulation results to validate our analytical models including the SER expres-

sions and propositions, and evaluate the performance of the proposed suboptimal power allocation. Moreover, the

corresponding OMA schemes are also included in these simulations to demonstrate the superiority of the NOMA

approach. In order to make a fair comparison, we assume that the total bit rate of OMA and NOMA systems

are always the same. For example, when 4-QAM is employed for both two users in the NOMA system during

two transmission frames, then in the corresponding OMA system, 16-QAM must be utilized for User 1 in the first

transmission frame and User 2 in the second frame. In this way, the data rate of the two systems can be consistent,

i.e., 2× log2 4 = log2 16 = 4 bit/frame. In the following simulations, we assume that the additive Gaussian white

noise of the two users are identical, namely, σ2
1 = σ2

2 = N0 for the PAM based system and σ2
1 = σ2

2 = N0

2 for one

dimension of the QAM based NOMA system.

A. SER Expressions Validation

In the following, we validates our analytical models of PAM and QAM cases, respectively.
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Fig. 6. The SER against the power allocation parameter γ of the PAM based NOMA system with N = 2,M = 4, |h1| = 0.5 and |h2| = 1.

1) NOMA with PAM: In this case, we conduct simulations in a scenario with N = 2, M = 4 and γ = 0.8.

The channel coefficients for the two users are |h1| = 0.5 and |h2| = 1, respectively. The SER results of User 1

and User 2 are provided in Fig. 5 where plots of an 8-PAM OMA system under the two different channels are

also provided for comparison. It is observed that the analytical SERs of both two users match the simulated SERs

perfectly, which validates our SER expressions in equation (13) and (33). In addition, the SER of User 1 in the

NOMA system is much lower than its SER in the OMA system. On the other hand, the SER of User 2 in the

NOMA system is still comparable to that in the OMA system.

Next, to verify Proposition 5 and Proposition 6, another simulation is further provided where we investigate the

impact of γ on SERs. In this simulation, we set N = 2, M = 4 and Es/N0 = 22 dB and keep the channels h1

and h2 unchanged. The results are shown in Fig. 6. First, the SER of User 1 is decreasing with the increasing of

γ, which matches well with our Proposition 5. In addition, it is observed that the SER of User 2 is quasi-convex

in γ. By applying exhaustive search, we found that the minimal value is achieved at the point γmin ≈ 0.758. On

the other hand, according to Proposition 6, the suboptimal power allocation parameter in this case is γsub ≈ 0.762,

which is slightly bigger than γmin. Moreover, it can be observed that the bottom of the curve is relatively flat, i.e.,

the SER of User 2 has little changes in the interval 0.74 < γ < 0.78. Therefore, the SER difference between γsub

and γmin is negligible. The above observations confirms our Proposition 6.

Now, we evaluate the performance of the proposed suboptimal solution γ∗ given in (38) to Problem (43).

Generally, depending on the feasible range of γ, there are two situations. In the first situation, the coefficient

γsub is located within the feasible range of γ. For example, when assuming that the constraint of User 1 requires

the SER of User 1 to be smaller than 10−1, i.e., λ = 10−1, by referring to Fig. 6, we note that the corresponding

power allocation parameter (which makes the SER of User 1 equal to 10−1) is γλ ≈ 0.66. In addition, as γ grows,

i.e., γ > γλ, the reliability requirement of User 1 is definitely satisfied. This actually defines the feasible range of γ
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for the optimization problem and validates that the original problem (38) can be transferred to Problem (40). Then,

the remaining work is to find the optimal γ which minimizes the SER of User 2 within its feasible range. Based

on the analysis in the previous paragraph and considering Proposition 6, we learn that the suboptimal solution

to minimizing the SER of User 2 without considering the feasible range of γ is γsub ≈ 0.762, which is located

within the feasible range of γ. Thus, in the first situation, the suboptimal solution of Problem (38) is γ∗ = γsub,

which proves (43) as γsub > γλ. Now, we consider the other situation, i.e., γsub is not in the feasible range of

γ. When λ = 10−2, the corresponding γ to achieve this SER becomes to γλ ≈ 0.8. Intuitively, the suboptimal

solution γsub ≈ 0.762 is no longer feasible in this case. Considering that the SER of User 2 increases in γ

when γ ≥ γsub and γλ > γsub, the optimal solution to Problem (38) with λ = 10−2 is γ∗ = γλ, which also

matches the proposed solution in (43). Therefore, by summarizing the analysis of the two situations, it is validated

that γ∗ = max {γsub, γλ} is the suboptimal solution to minimize the SER of User 2 while ensuring the SER

requirement of User 1 in the NOMA system.
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Fig. 7. Comparison of the theoretical and simulated SER of the QAM based NOMA system with N = 16,M = 4, h1 = 0.5 + 0.6j,

h2 = 0.7 + 0.8j and γ = 0.96.

2) NOMA with QAM: In the simulation for the QAM based NOMA system, we let N = 16, M = 4 and set

the power allocation parameter to 0.96. The channel coefficients for the two users are set to h1 = 0.5 + 0.6j and

h2 = 0.7 + 0.8j. The simulation results are plotted in Fig. 7, where the plots of the Gray-coded 64-QAM OMA

system are also included as baselines. Again, we observe that the analytical SER expressions of both users in the

NOMA system match the simulation results, which validates (36) and (37). Moreover, the plots of this QAM based

NOMA system are very similar to that of the PAM based NOMA (see Fig. 5), i.e., the SER of User 1 is much

lower in the NOMA system when compared to the corresponding OMA system, while the SER of User 2 are very

close in both NOMA and OMA systems.

Then, we further demonstrate the influence of γ on SERs. The results are shown in Fig. 8, where we set

Es/N0 = 23 dB. It is observed that the SER of User 1 is decreasing in γ. which confirms our Proposition 7. On

the other hand, the SER curve of User 2 is quasi-convex in γ and the minimum value of the curve is at the point
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Fig. 8. The SER against the power allocation parameter γ of the QAM based NOMA system with N = 16,M = 4, h1 = 0.5 + 0.6j and

h2 = 0.7 + 0.8j.

γmin ≈ 0.95157 (by an exhaustive search). The proposed suboptimal power allocation parameter can be computed

according to Proposition 8, which is γsub = 20
21 ≈ 0.95238, Hence, it matches with Proposition 8 in that γsub is

slightly greater than γmin and the performance degradation of γsub is negligible.

Similar to the PAM based NOMA system, the proposed solution (43) for the optimization problem, i.e., minimizing

the SER of User 2 while keeping the reliability performance of User 1, can also be validated in this QAM based

NOAM system by referring to Fig. 8.

It is worth noting that the similar simulations with other modulation orders for both PAM and QAM based

NOMA systems are also conducted in order to validate our propositions. Due to the page limitation, the results are

not provided here.

B. Performance evaluation of the proposed power allocation

In this subsection, we aim at evaluating the proposed closed-form suboptimal power allocation solution in

comparison with the optimal one. By examining Equation (43), we notice that when γλ > γsub, the equality

γ∗ = γλ always holds, thus, the γ∗ is always the optimal solution, i.e., there is no gap between the suboptimal

and optimal power allocation parameters. Therefore, in order to investigate the maximal performance error of the

proposed suboptimal solution in comparison to the optimal one, we set a sufficient loose reliability constant with

respects to User 1 in the following simulations, which corresponds to making γλ sufficiently be close to zero.

Moreover, for all simulations in this subsection, we consider the following scenarios, i.e., PAM with N = 2 and

M = 4, PAM with N = 4 and M = 4, QAM with N = 4 and M = 4, and QAM with N = 16 and M = 4,

while varying Es/N0 from 15 dB to 23 dB. The channel coefficients for the PAM case are h1 = 0.5 and h2 = 1,

while for the QAM case are h1 = 0.5 + 0.6j and h2 = 0.7 + 0.8j.

Both the performance difference in term of SER of User 2 and the difference between the choice of γ between the

proposed suboptimal approach of the optimal approach are provided in Fig. 9 and Fig. 10, respectively. In particular,
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Fig. 10. The optimal and suboptimal values of the power allocation parameter γ against Es/N0 for PAM and QAM based NOMA systems

the optimal values of the power allocation parameter γ in these simulations are obtained from the analytical SER

expressions for User 2 by applying the exhaustive search with a resolution of 0.00001. From Fig. 9, it is observed

that the performance difference (between the optimal and suboptimal approaches) under all scenarios are negligible.

On the other hand, when we check Fig. 10, it can be seen that there only exist very small gaps between the optimal

and suboptimal power allocation parameters. Moreover, as Es/N0 increases, these gaps become more tiny and

invisible. Therefore, the suboptimal approach has an excellent performance, which is a tight approximation of the

optimal one.

As seen in the our discussion in the previous sections, it is unlikely to obtain a closed-form expression for the

optimal power allocation parameter. The proposed closed-form expression of this suboptimal allows us to investigate

how the (approximate) optimal power allocation is influenced by users’ constellation order M and N . For example,



23

df2(γ)

dγ

∣∣∣∣
γ=γsub

=
(M − 1)ω

M
√

2π(1−γ)
e−

ω2(1−γ)
2 +

2

MN
√

2π

N−1∑
k=1

(N−k)

{
(M − 1)kυ
√
γ

(
e−

(2kM−1)2ω2(1−γ)
2 − e−

(2kM+1)2ω2(1−γ)
2

)}

+
1

MN
√

2π

N−1∑
k=1

(N−k)

{
(M − 1)ω√

1− γ
e−

(2kM+1)2ω2(1−γ)
2 +

(2k − 1)υ
√
γ

e−
(2kM−1)2ω2(1−γ)

2

}

− 1

MN
√

2π

N−1∑
k=1

(N−k)e−
(2(k−1)M+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
+

(2k − 1)υ
√
γ

}
= g1 + g2 + g3 + g4

(44)

according to Proposition 6 and Proposition 8, we can easily show that for both PAM and QAM cases γsub is

increasing in M but decreasing in N . Then, we can reasonably conclude the same characteristic for the optimal

approach.

VII. CONCLUSION

In this work, we determined SER expressions of a downlink NOMA system under fading channels with arbitrary

ordered PAM and QAM symbols. Furthermore, the impact of the power allocation on the reliability, i.e., the

SER of each user in the NOMA system, was investigated based their analytical SER expressions. Particularly, an

optimization problem regarding the power allocation parameter was proposed, which aims at minimizing the SER

of the user with a better channel gain while guaranteeing the reliability demand for the user in a poorer channel

condition. By analyzing the derived SER expressions for the NOMA system, we provided a closed-form suboptimal

solution to this problem. The accuracy of our analytical model (including both of the derived SER expressions and

our propositions) was validated by simulations. Furthermore, the proposed suboptimal power allocation approach

was verified as a tight approximation of the optimal one which provides the best SER for the user with the better

channel condition.

It should be pointed out that the procedure to obtain the SER expressions in the two users NOMA system also

applies to a multiuser NOMA system. In our future work, we will investigate analytical SER expressions of NOMA

systems with arbitrary users and study the power allocation schemes based on these expressions. On the other hand,

in this paper, we assume that perfect SIC is achievable, which is not always true in practical systems. Therefore,

investigating the analytical SER of the NOMA system with imperfect SIC and the corresponding optimal power

allocation scheme is considered are interesting topics, which will be considered in our future work.

APPENDIX A

In this part, we demonstrate that the first derivative of the SER expression for User 2 on the power allocation

coefficient γ is always greater than 0 at the proposed suboptimal point γsub, i.e., df2(γ)
dγ

∣∣
γ=γsub

> 0 always holds.

As the condition for obtaining γsub is υ
√
γ = Mω

√
1− γ, therefore, instead of substituting γsub = M2(N2−1)

M2N2−1 into

Equation (41), we can obtain df2(γ)
dγ

∣∣
γ=γsub

by replacing the υ
√
γ components with Mω

√
1− γ for all exponential
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terms in (41), which results in (44). Furthermore, Equation (44) can be divided into four parts, correspondingly

denoted as g1, g2, g3 and g4.

Note that in (41), parameters γ, ω, υ > 0, M and N are integer modulation orders with M,N ≥ 2. Intuitively,

g1 and g3 are always positive. In addition, as (2kM − 1)2 < (2kM + 1)2 always holds for all k = 1, 2, . . . , N − 1,

we can derive that the second part g2 is greater than 0 as well. However, part g4 is always negative. Therefore, to

prove that df2(γ)
dγ

∣∣
γ=γsub

> 0 is always true, we have to merge g4 with other positive parts and demonstrate that

the resulting combinations are always greater than 0. In particular, by combining parts of g4 with parts of g3 and

merging the remaining parts of g4 with g1, we can show that g1 + g3 + g4 > 0.

We start with combining g4 with g3. Observing the k − 1 components in the exponential terms of g4 prohibit

us from merging g4 with g3, we can rewrite g4 and combine parts of it with the corresponding parts of g3. By

partitioning the summation of g4 into k = 1 and k = 2, 3, . . . , N − 1, and denoting the two parts as ĝ4 and ḡ4,

respectively, g4 can be expressed as g4 = ĝ4 + ḡ4, in which

ĝ4 =− N − 1

MN
√

2π
e−

ω2(1−γ)
2

{
(M−1)ω√

1− γ
+

υ
√
γ

}
, (45)

and

ḡ4 = − 1

MN
√

2π

N−1∑
k=2

(N−k)e−
(2(k−1)M+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
+

(2k − 1)υ
√
γ

}
.

(46)

Let k′ = k − 1, then ḡ4 can be rewritten as

ḡ4 = − 1

MN
√

2π

N−2∑
k′=1

(N−k′−1)e−
(2k′M+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
+

(2k′ + 1)υ
√
γ

}
.

(47)

After rewriting g4, we must modify g3 so that they can be combined. Observing that e−
(2kM−1)2ω2(1−γ)

2 > e−
(2kM+1)2ω2(1−γ)

2

always holds ∀k = 1, 2, . . . , N − 1, we can achieve a lower bound g′3 for g3, which makes g3 > g′3 > 0 always

true. And g′3 can be expressed as

g′3 =
1

MN
√

2π

N−1∑
k=1

(N−k)e−
(2kM+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
+

(2k − 1)υ
√
γ

}
> 0.

(48)

By dividing the summation of (48) into k = N − 1 and k = 1, 2, . . . , N − 2, and denoting the corresponding parts

as ĝ′3(γ) and ḡ′3(γ), we can get g′3(γ) = ĝ′3(γ) + ḡ′3(γ), in which,

ĝ′3 =
1

MN
√

2π
e−

(2(N−1)M+1)2ω2(1−γ)
2{

(M − 1)ω√
1− γ

+
(2 (N − 1)− 1) υ

√
γ

}
,

(49)
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and

ḡ′3 =
1

MN
√

2π

N−2∑
k=1

(N−k)e−
(2kM+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
+

(2k − 1)υ
√
γ

}
.

(50)

Intuitively, ĝ′3(γ) is always greater than 0. Moreover, we can combine ḡ′3(γ) with the expression of ḡ4(γ) in

Equation (47), which can be simplified as

ḡ′3 + ḡ4 =
1

MN
√

2π

N−2∑
k=1

e−
(2kM+1)2ω2(1−γ)

2

{
(M − 1)ω√

1− γ
− (2N − 4k + 1)υ

√
γ

}
.

(51)

As all the elements outside the curly braces of (51) are positive, thus, the sign of this equation is determined by

the terms inside the curly braces. In addition, the value of the last term (2N−4k+1)υ√
γ decreases as k increases for

k = 1, 2, . . . , N − 2, therefore, we can derive that

(M − 1)ω√
1− γ

− (2N − 4k + 1)υ
√
γ

≥ (M − 1)ω√
1− γ

− (2N − 3)υ
√
γ

. (52)

Recall that the condition υ
√
γ = Mω

√
1− γ must be satisfied to obtain γsub, therefore, by substituting

√
1− γ =

υ
√
γ

Mω , υ =
√

6Es
N2(N+1)(N−1) and ω =

√
6Es

N2(M+1)(M−1) into the right side of inequality (52), we can acquire

(M−1)ω√
1− γ

− (2N−3)υ
√
γ

=
1

υ
√
γ

{
(M−1)Mω2−(2N−3)υ2

}
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6Es
N2υ
√
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− 2

N + 1
+

1

N2 − 1

}
> 0,

(53)

in which the inequality holds as all the parameters before the curly braces of (53) are positive, and the modulation

order is M,N ≥ 2. Thus, by combining formula (51), (52) and (53), we can prove that

ḡ′3 + ḡ4 > 0. (54)

Now, the only remaining negative part is ĝ4. By combining it with g1 and substituting the expressions of
√

1− γ,

υ and ω utilized in the derivation of (53) into the combination, we have

g1 + ĝ4 =
1

MN
√

2π
e−

ω2(1−γ)
2

{
(M−1)ω√

1− γ
− (N−1)υ

√
γ

}

=
ω

MNυ
√

2πγ
e−

ω2(1−γ)
2

{
(M−1)Mω2 − (N−1)υ2

}
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6Esω

N2MNυ
√

2πγ
e−

ω2(1−γ)
2

{
1− 1

M + 1
− 1

N + 1

}
> 0,

(55)

in which the inequality holds as the elements outside the curly braces are all positive and the modulation order is

M,N ≥ 2.
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According to the analysis above, the sign of df2(γ)
dγ

∣∣∣
γ=γsub

given in Equation (44) can be determined, which is

df2(γ)

dγ

∣∣∣∣
γ=γsub

= g1 + g2 + g3 + g4 (56a)

> g1 + g2 + g′3 + g4 (56b)

= (g1 + ĝ4) + g2 + (ḡ′3 + ḡ4) + ĝ′3 (56c)

> 0. (56d)

The inequality in (56b) holds as g′3 is the lower bound of g3, i.e., g3 > g′3. As g′3 = ĝ′3 + ḡ′3 and g4 = ĝ4 + ḡ4,

(56c) can be derived from (56b). Considering g2 is always greater than 0 and combining (48), (54) and (55), the

inequality in (56d) can be obtained.
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